Human ESC-derived Neural Rosettes and Neural Stem Cell Progression
نویسندگان
چکیده
منابع مشابه
Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Developmentally Mimic Human Pluripotent Stem Cell Neural Differentiation.
For diseases of the brain, the pig (Sus scrofa) is increasingly being used as a model organism that shares many anatomical and biological similarities with humans. We report that pig induced pluripotent stem cells (iPSC) can recapitulate events in early mammalian neural development. Pig iPSC line (POU5F1(high)/SSEA4(low)) had a higher potential to form neural rosettes (NR) containing neuroepith...
متن کاملHuman ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage.
Neural stem cells (NSCs) yield both neuronal and glial progeny, but their differentiation potential toward multiple region-specific neuron types remains remarkably poor. In contrast, embryonic stem cell (ESC) progeny readily yield region-specific neuronal fates in response to appropriate developmental signals. Here we demonstrate prospective and clonal isolation of neural rosette cells (termed ...
متن کاملPig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes.
The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate in...
متن کاملHighly Pure and Expandable PSA-NCAM-Positive Neural Precursors from Human ESC and iPSC-Derived Neural Rosettes
Homogeneous culture of neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) would provide a powerful tool for biomedical applications. However, previous efforts to expand mechanically dissected neural rosettes for cultivation of NPCs remain concerns regarding non-neural cell contamination. In addition, several attempts to purify NPCs using cell surface markers have no...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cold Spring Harbor Symposia on Quantitative Biology
سال: 2008
ISSN: 0091-7451,1943-4456
DOI: 10.1101/sqb.2008.73.052